A Better Lower Bound on Average Degree of Online k-List-Critical Graphs
نویسنده
چکیده
We improve the best known bounds on the average degree of online k-list-critical graphs for k > 6. Specifically, for k > 7 we show that every non-complete online k-list-critical graph has average degree at least k−1+ (k−3) 2(2k−3) k4−2k3−11k2+28k−14 and every non-complete online 6-list-critical graph has average degree at least 5 + 93 766 . The same bounds hold for offline k-list-critical graphs.
منابع مشابه
A Better Lower Bound on Average Degree of 4-List-Critical Graphs
This short note proves that every incomplete k-list-critical graph has average degree at least k − 1 + k−3 k2−2k+2 . This improves the best known bound for k = 4, 5, 6. The same bound holds for online k-list-critical graphs.
متن کاملA better lower bound on average degree of k-list-critical graphs
We improve the best known bounds on average degree of k-list-critical graphs for k ≥ 6. Specifically, for k ≥ 7 we show that every non-complete k-list-critical graph has average degree at least k − 1 + (k−3)(2k−3) k4−2k3−11k2+28k−14 and every non-complete 6-list-critical graph has average degree at least 5 + 93 766 . The same bounds hold for online k-list-critical graphs.
متن کاملImproved lower bounds on the number of edges in list critical and online list critical graphs
We prove that every k-list-critical graph (k ≥ 7) on n ≥ k + 2 vertices has at least 1 2 ( k − 1 + k−3 (k−c)(k−1)+k−3 ) n edges where c = (k − 3) ( 1 2 − 1 (k−1)(k−2) ) . This improves the bound established by Kostochka and Stiebitz [13]. The same bound holds for online k-list-critical graphs, improving the bound established by Riasat and Schauz [16]. Both bounds follow from a more general resu...
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملInfinite families of crossing-critical graphs with prescribed average degree and crossing number
iráň constructed infinite families of k-crossing-critical graphs for every k ≥ 3 and Kochol constructed such families of simple graphs for every k ≥ 2. Richter and Thomassen argued that, for any given k ≥ 1 and r ≥ 6, there are only finitely many simple k-crossingcritical graphs with minimum degree r. Salazar observed that the same argument implies such a conclusion for simple k-crossing-critic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 25 شماره
صفحات -
تاریخ انتشار 2018